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One-dimensional polyacetylene is studied as a model of statistical mechanics. In 
a semiclassical approximation the system is equivalent to a quantum X Y  model 
interacting with unbounded classical spins in one-dimensional lattice space Z. 
By establishing uniform estimates, an infinite-volume-limit Hilbert space, a 
strongly continuous time evolution group of unitary operators, and an invariant 
vector are constructed. Moreover, it is proven that any infinite-limit state 
satisfies Gibbs conditions. Finally, a modification of Araki's relative entropy 
method is used to establish the uniqueness of Gibbs states. 
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1. I N T R O D U C T I O N  

We study the (quantum) statistical mechanics of a polyacetylene model. 
Polyacetylene (CH)x is a one-dimensional polymer, which exhibits some 
interesting properties. The following Hamiltonian for a bounded region 
A = { - n ,  - n  + 1,..., n} c Z was suggested by Schrieffer et al.(m): 

with 

H = HB + H F (1.1) 

1 n - - 1  W 2 

~ . =  2 5-~+ 2 T(ui-u,+l/2 
i =  - - n  i =  --rt  

n 1 

i4~= 2 Z Ecs*,ic,,i+i + * Cs, i+ 1Cs,i] [t  - g ( u  i - ui+ 1)] 
i =  n s = +--1/2 
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where M is the mass of CH, w is a positive constant, and t and g are real 
constants. The indices s = +_ �89 stand for the spins of the fermions in C-C 
bonds, and one imposes 

[ Pi, uj] = - i 6  o 
(1.2) 

(G*.,, G..j.} =G.6o. 

where EA, B] = A B -  BA and {A, B} = AB + BA. For detailed discussions 
of the model, we refer to Refs. 4, 5, 10, and 11. 

Some heuristic arguments suggest that the vibrations 
( - 1 ) X ( u x - u x + l )  take the form of solitons, and that fractional charges 
may appear under the influence of the solitions/1~ In Ref. 5 we tried to 
clarify these heuristic arguments with rigorous statistical mechanics, and we 
established some properties, such as the exponential clustering of some fer- 
mion correlation functions. Our purpose in this paper is to construct the 
thermodynamic limit theory and to establish the uniqueness and the cluster 
property of infinite-volume Gibbs states of the model. Thus, our results are 
extensions and complements of those in Ref. 5. The results show that the 
previous heuristic arguments in Refs. 10 and 11 need serious recon- 
sideration at least for fl < oo (and under a semiclassical approximation). 

Instead of the full model (1.1), we make a semiclalsical approximation 
to simplify our discussions: 

A s s u m p t i o n  A. (A semiclassical approximation) M in (1.1) is so 
large so that the boson kinetic energy term is negligible. 

Under the above assumption, we introduce new boson fields 

r 1/2 ~--- - - ( U i -  Hi+ 1) 

whose correlation functions are well-defined. We regard {~bi+l/2} as 
independent boson fields. That is, we impose free boundary conditions for 
the boson fields and then make the changes of variables 

- ( u i -  u~+ 1) ~ ~b~+ 1/2. Since there is no direct coupling between s = 1/2 
and s = -1 /2  fermions, we consider one kind of fermion. Therefore, for any 
A = {n, n +  1,..., m} c Z  we write 

with 

H A = H A ,  B + H A ,  v (1.3) 

HA.=  14/ , , )  ~ ' i +  1/2 

i , n  - -  1 

HA.F = EC,*G+I + C*+,C,](t+ gr (1.5t 
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where 

{Ci ~, Cj} =6o. , {Ci, Cj} = 0  (1.6) 

That is, the fermions satisfy the anticommutation relations (CAR). 
We next discuss the algebra of observables. Let us denote 

dAv = the C*-algebra generated by { Ci, C*; i e A } 

d B = the C*-algebra of bounded continuous functions of variables (1.7) 

0i+1/2, i e A  

~A = dAB| 'v (t.8) 

The quasilocal algebra of observables is given by 

~ ' = d n |  v (1.9) 

with 

d ' =  U d r =  U 
AcZ  AcZ  

The finite-volume Gibbs states and the partition function are defined by 

1 
P ~ ( A ) = ~ A  f f i  dO,+l/2e-r -~HA'v) 

Z A :  f fi d~)i+l/2e-fiHA'gYr(e -flHA'F) 
i~rt 

(1.10) 

where fl > O, A e dA , F A = C TM, and HA, B and HA, v a r e  given by (1.4). 
In order to construct infinite-volume-limit equilibrium states we 

introduce Green's functions. (2) Let eA be the time evolution automorphism 
on S/A given by 

aA(A ) = eitHA,VAe ,H~,v (1.11) 

The finite-volume Green's functions are given by 

G A(A, B; t )=pA(AaA(B))  (1.12) 

Although PA is defined as a state over dA, it has an extension to a state on 
d by the Hahn-Banach theorem, which we denote again PA" The hounds 

IGA(A, B; t)] ~ ItAtl [IBI[ (1.13) 
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imply that there exists a subnet {As} such that 

G(A, B; t ) =  lim G(A, B; t) (1.14) 
A ~ Z  

for all A, B e  ~4 and t E R. This is a consequence of Tychonoffs theorem. 
Clearly, the value 

p(A)=G(A, 1;0) (1.15) 

determines a state p over the quasilocal algebra sO. We write that for any 
finite sequence h: Z + 1/2 ~ R, 

~b(h)= ~ ~bx+mh(x+ 1/2) (1.16) 
x ~ Z  

For any state co on d ,  let (~o), ~o, r be the cyclic GNS representation 
of ~ '  with respect to co. Let rc~(~b(h)) be the generator of the group 
n~(exp[itO(h)]. We say that a state co on d is an entire analytic state if 
(r162 is an entire analytic function for each finite 
sequence h. 

We now list our main results in this paper. 

T h e o r e m  1.1. Let p be any weak*-limit state of finite-volume 
Gibbs states PA defined as in (1.15). Then p is an entire analytic state on 
~ .  Let ( ~ ,  ~p, f2p) be the cyclic representation with respect to p. Then 
there exists an essentially self-adjoint operator H defined on gp(U,~cz ~A) 
such that 

G(A, B; t) = (Tzp(A* )f2 p, e'mTzp(B) e--itH~2 p) 

for any A, B s d ,  t ~ R. Moreover, r is invariant under e ~tH. 

We will prove the above result in Section 2. We next define Gibbs con- 
ditions for the model. For any finite A = {n, n + 1,..., m} c Z, let 

+ E C * C m + ~ +  C m +  r 1 Cm](l+gOm+t/2) (1.17) 

Thus, W A is the surface energy of A. For  a given entire analytic state co on 
d we define rCco(WA) by replacing C~ and ~b~+ m by rc~(C~) and 
rco~(~b~+ m), respectively, in (1.17). For any finite sequence h: Z +  1/2 ~ R, 
let 

Ilhll p = Ih(x+ 1/2)1 p (1.18) 
x ~ Z  

We now list Gibbs conditions for a state co on ~r 
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Defini t ion 1.2. For  given/3 > 0 and w, t, g e R, let F be the set of 
states on sr statisfying the following conditions: 

(G- l )  [Regulari ty]  Let c=max{1/2/sw 2, 2fig/w2}. Then each c o ~ F  
is entire analytic and satisfies 

co(exp[~b(h)]) ~< exp{c[llhll 2 + Ilhll,] } 

(G-2) 

(G-3) 

uniformly in co e F. 

Let (Jg~o, n~o, f2o~) be the cyclic representation with respect to 
co e F. Then for each co e F, g2o~ is a separating vector for 
~ ( ~ ' ) " .  

Let h be the generator of the modular  automorphism group 
for co s F. Then for any B ~ SeA, A c Z, 

h~(B)t '2  ~ = [~c~(H A + WA) , ~o~(B)] E2~ 

(G-4) [Gibbs  conditions] For any finite A c Z, let ~r be the 
closure of U A ~ A' = e tin,. Let 

F,~/2s = exp{ - �89  ~ (  WA)] } f2o 

Then for co s F 

(F~/2s ~o(A) ~o~(B) F~/J2o,)= pA(A)(F~/2s , ~o~(B) F~/2s 

for any A e ~A, B e  ~r where PA is the finite-volume Gibbs 
state. We say that any co e F is a Gibbs state. 

Remark. (a) The regularity condition (G- l )  says that each co e F is 
an entire analytic state and so (G-3) makes sense. 

(b) The expression in (G-4) is a formal expression. In Section 3 (and 
Section 4) we will give a precise meaning to e x p { -  � 8 9  WA)] } g2~o 
for any Gibbs state co e F via a Dyson expansion. (1'2) See Propositions 3.5 
and 4.1. 

We then have the following result: 

Theorem 1.3. Let p be any weak*-limit of {PA} and let H be the 
self-adjoint operator in Theorem 1.1. Then H = h, and p is a Gibbs state. 

We will prove Theorem 1.3 in Section 3. 
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In order to discuss uniqueness of Gibbs states and the clustering 
property, we introduce a C*-subalgebra d e of d as follows. Let 

F,e __ d A - the algebra generated by even monomials 

in C* and Cj, i , j ~ A  (1.19) 

and 

d e =  U d~A (1.20) 
A c Z  

For each j ~  Z, let ~r} 1) and ~r} 2) be 2 x 2 Pauli matrices, (21 and let sJ~ be the 
algebra generated by a} 1) and a} 2), j e  A. Similarly, let SJA e,e be the algebra 
generated by even monomials in ~r} 1) and a~2), j, k E A. We write J and ~J~ 
for the closure of UA c z  d ]  | s#~ and U A  ~ Z  ~ B  (~ d2~P,e, respectively. It is 
known that 

~ e = ~ e  (1.21) 

(see Example 6.2.14 of Ref. 2 and references therein), and that (2'5) 

m--1 

HA,F = - 2  2 (~r}l)ff}~l +~rT)a~2))(t+ gOJ+l/2) (1.22) 
j=n 

Thus, the model is equivalent to a quantum X Y  model interacting with 
boson fields. 

Each element A E d has a unique decomposition into even and odd 
parts 

A = A + + A  - 

where A + e d e .  (2) Let d o be the space of odd elements. We say that a state 
~o is an even Gibbs state if it is a Gibbs state and if ~o(A) = ~o(A + ) for any 
A e d .  

T h e o r e m  1.4. The set F e of even Gibbs states consists of one 
element. 

Remark.  (a) By the definition of finite-volume Gibbs states OA in 
(1.10), it turns out that any weak *-limit p of finite Gibbs states PA is an 
even Gibbs state. 

(b) Using the Gibbs condition (G-4), one may show that any Gibbs 
state is even. See the remark below the proof of Lemma 4.2 in Section 4. 
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In Section 4, we will show that the set F e of even Gibs states on d e 
forms a metrizable (convex and compact) simplex, and that for any 
extremal state co ~ F e, the algebra ~ at infinity for ( d  e, co) is trivial. As a 
consequence of Theorem 1.4, we have the following (see, e.g., 
Theorem 2.6.10 of Ref. 2): 

T h e o r e m  1.5. The unique Gibbs state co has the cluster property: 
For any A e ~ '~,  B E d ~ ,  

Ico(AB) - co(A) co(B)l --, 0 

as dist(A, A') ~ oe. 

It may be worthwhile to comment on Theorem 1.5 (and also on 
Theorem 1.4). For  a technical reason (Proposition 4.4), we are unable to 
extend Theorem 1.5 to d .  The difficulty comes from complicated local 
structures of ~4, i.e., [sJA,, dA] r 0 even if A ~ A ' =  ~ .  If one can show the 
result in Proposition 4.4 for T~o~ ,  A ~rC~o(S~A), and B~rc~(~Ac), where 
Y'o~ is the center of ~o(~')" ,  then the restrictions to even elements in our 
results can be removed. 

The contents of this paper are as follows: In Section 2, we establish 
some uniform estimates (Propositions 2.1-2.3) for finite Gibbs states. Using 
the uniform estimates, we prove Theorem 1.1. In Section 3, we introduce 
the notion of local perturbations 

O wA = e x p [ -  �89 WA)]f2 p 

of the cyclic vector Qp in terms of a Dyson expansion, and then prove 
Theorem 1.3. 

Section 4 is devoted to the proof of Theorems 1.4 and 1.5. We use a 
modified version of Araki's relative entropy method. (~'3'7) Since the 
quasilocal algebra is a mixture of classical and quantum observables, and 
since the system is an unbounded spin system, we have to modify the stan- 
dard methods, ~'2"8) and use several limiting process. 

In Section 5, we discuss some open problems for the full quantum 
model (1.1) and also for ground states (/~= oe). 

2. C O N S T R U C T I O N  OF I N F I N I T E - V O L U M E - L I M I T  T H E O R Y  

In this section we obtain useful uniform estimates for finite-volume 
Gibbs states, and then we construct an infinite-volume-limit theory. At the 
end of this section we will prove Theorem 1.1. 

We first derive uniform bounds for the model. Let [Iht[p be the lp- 
norms defined in (1.18) for any finite sequence h: Z +  1 / 2 ~  R. We then 
have the following bounds: 
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Proposition 2.1. Let c=max{1/2~w2,2~g/w2}. Then for any 
h: Z +  1/2 ~ C 

[pA(exp[~b(h)])[ ~< exp{c(HhH 2 + ILh[] 1)} 

uniformly in A. 

Proof. Since [pA(exp[{b(h)])] <~pA(exp[(~(Reh)]), it suffices to show 
the proposition for real h. Recall the definitions of HA,B, HA,F, and pA(A) 
in (1.4), (1.5), and (1.10), respectively. By changes of variables 
~bx+ 1/2 ~ ~bx+ 1/2 - (1/w2) h(x + 1/2), one obtains that for any real h 

pA(exp[r ~< exp(c [[hi[ 2) Z ~  

i ~ A  

where 

. [, ( GA=  S EC*Cx+,+Cx+,CA -jgh x+ 
x ~ A  

Thus, if one shows that 

TrvA(e-~A.r + cA) ~< exp(c [[hi[ 1) TrvA(e- ~HA.r) (2.2) 

the proposition will follow from (2.1) and (2.2). The bound (2.2) follows 
from the Golden-Thompson inequality 

Tr(e A + B) ~< Tr(eAe B) <~ Tr(eA)eNBii (2.3) 

for any self-adjoint matrices A and B, and from the fact that [ICX[Iv~< 1. 
This proves the proposition. 

I . emma 2.2. Let hs, j =  1, 2,..., m, be sequences from A + 1/2 to R. 
Then there is a constant c, independent of A, such that 

q~(hj) ~cm(m!)  1/2 (llhll2 + Ilhlll) 
j = l  

uniformly in A. 

Proof. Let 

f ( z1 ,  Z2 ..... Zm)=PA exp[zjq)(hj)/x/-m(llhs[t] + Ijhjlll)] 
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Then f ( q ,  z2,..., Zm) is analytic in each variable zj, j = 1,..., m, separately. 
From Proposition 2.1, it follows that for Iz~l ~< 1 

If(z1 ..... zm)l ~<e dm 

for some constant d uniformly in A. Thus, one may use the Cauchy integral 
formula (on the unit circle C) to conclude that 

=ICO  ) lZl, ,Z ,Lo 
= 

e dm 

Since m m T m ~< c I rn. for some constant Cl, the lemma follows from the above 
bound. 

We next establish some commutator  estimates. Let A A =AA(~b) be a 
[A[ • [A[ Hermitian matrix whose ij element is given by 

0, li-- jl v ~ 1 
AA(qb)~J= ( t + g ~ + i / 2 ) ,  I i - - j l = l ,  i < j  (2.4) 

For  given operators A and B we write 

We also write 

(~O(B) = B, ~ ( B )  = I-A, 6~ I(B)] (2.5) 

C(g)= ~ C,g(i), C*(g) = ~ C*g(i) (2.6) 
i c Z  i c Z  

for any finite sequence g: Z--+R. For A = {n, n +  1 ..... m} c Z  we have 

HA,F = ~ C*AA(qk)ijCj (2.7) 
L j E A  

Here we have used the definitions in (1.5) and (2.4) to derive the above. A 
direct computation yields 

67,~,~(C(g)) = C(A,,(~)m g) (2.8) 
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Since 

dm 
dtm aA(C(g)) = im~a, (a~A,v(C(g))) (2.9) 

it follows from (2.8) that 

eff(C(g)) = C(ei'aA(~)g), eA,(C*(g)) = C*(e itAa(~)g) (2.10) 

We have the following result: 

P r o p o s i t i o n  2.3. For a fixed A ' c  A, and for A ~ daY,, there is a 
constant Ca independent of A such that 

m, A " 6  '~ ' PA((6HAF( )) HAv(A))~Cr~ m! 

uniformly in A. 

Proofi Let A ~ agav,. Then A can be identified as an polynomial of Ci 
and C*, isA' ,  with a degree at most 2 IAq. Thus it is sufficient to show the 
proposition for a monomial of the form 

P 

A = [~ Cil  , i teA' 
l--1 

where C~ is either Ci or else C*. Notice that 

6~a,v(a) = ~ f i  aT/~,F(Co) (2.11) 
ml=O, 1,...,m; / = 1  

~ml=m 

and that by (2.8) 

6~,(Co)= +C(Aa((~)m'eo) (2.12) 

where ei is the function defined by ei(j) = 6~. Let W m be the family of ran- 
dom walks (in A) of m steps starting at the site i~ A'. For w ~ W m, we 
denote the final site of w by wj. Then, from the definition of AA(O) it 
follows that 

C(AA(qs)mei) = E [ H (t + g(a(h+,2v2)] Cw (2.13) 
wE W~i (ll,12)cw 

We note that the total number of terms in (2.11) is pm and that 
card(Wm)~<2 m. We substitute (2.12) and (2.13) into (2.11). Then it 
becomes clear that 

PA((6~A,v(A))*(6~A,v(A))) 
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is the sum of (pm2m)2 terms of the form 

pA (t + g~i,+ 1/2) c,~ 

Using Proposition 2.1 and the fact that IICill = 1, we bound the above 
expression by c 2 m ( 2 m ! )  1/2. This proves the proposition completely. 

We will use the following lemma to prove Theorem 1.1. 

k e m m a  2.4. [Lemma 6.3.23 of Ref. 1]. Let {f~} be a net of n~> 1 
times continuously differentiable functions from R to C, and assume that f~ 
converges pointwuse to a function f Assume that the derivatives of f~ up 
to order n are bounded on compacts, uniformly in cc It follows that f is 
n -  1 times continuously differentiable, and 

f ( m )  __~ f ( m )  

for rn = 0, 1 ..... n - 1, where the convergence is uniform on compacts. 

Using Proposition 2.3 and Lemma 2.4, we obtain the following result: 

P r o p o s i t i o n  2.5. Let {A~} be a subnet such that 

G(A, B; t ) =  lim GA,(A, B; t) 
A ~ Z  

exists for A, B e s~r and t E R. For  any A e sr and B e sd A, G(A, B; t) can be 
extended to an analytic function G(A, B; z) on the strip 
D =  { z : 0 < I m z < f l } ,  and for any m~>0 

d m . d m 
dz" G(A, B; z) = hm ~ GA,(A, B; z) 

A ~ z  dz  

on z e/3~. Furthermore,  there is a constant CB such that 

dm G(A, B;z) <<, I[AII C~(m!) ~/2 
d z  m 

on zGOfl. 

Proof. Since ~r B, is an Abelian algebra, it is sufficient to show the 
proposition for B e s t  v, for some finite A ' c Z .  For  given A e d and 
B e  sr 'v, we write 

f ( z )  = G A~(A, B; z) = pA=(A~AffB)) (2.14) 

where 
c~A(B) =e~,HA.FBe i~H~.F (2.15) 

822/46/3-4-10 
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It then follows that for z s D e 

(m) _ _  i m A~ " , B 
f~  (z)-- pA,(Acz z (~qa~v()) (2.16) 

= impA~(OtA~(A) 6~IA~,,v(B)) 

For a finite A~, the above is analytic in the region D e. Thus, [fm(z)l has 
the maximum on the boundary of D e. But 

] f ( m ) ( z ) [ 2 = ,  ~< t]A[[ 2 pA~([~la~,v(B)]*  5TIA~,v(B)) 

~< [[A[[ 2 C'~m! 

by Proposition 2.3. On the other hand, 

m Z 2 __ m , B I f ,  ( )lz=t+i~-]P.~o(aHA~ ~( ) ~a~t(A)[ 

<~ pA~(6~la~,v(B)[3~A~.F(B)]*) pA~(A*A) 

<<. [[Al[Z C'~m! 

Here we have used the definition of PA in (1.10), the KMS conditions for 
PA, the Schwarz inequality for the state PA, and Proposition 2.3. Thus, we 
conclude that 

[f(~m)(z)l <<, HAl[ C~(rn!) '/2 (2.17) 

o n / )  e uniformly in A~. Thus, {f,(z)} is a net of analytic functions on D~ 
and each f(~m)(z) is bounded uniformly by (2.17). One may choose a subnet 
{A,,} of {A~} such that f ~ , ( z ) ~ f ( z )  on /3 e. From (2.17) and Vitali's 
theorem it then follows that f~m) ~ f (m)  on D e (and also on the boundary, 
by Lemma 2.4). The boundedness in the proposition follows from (2.17). 

We are now ready to show Theorem 1.1. 

Proof of Theorem I.I. Let ( ~ ,  ztp, sgp) be the cyclic representation 
with respect to a weak*-limit state p of {PA}. Then p is entire analytic by 
Proposition 2.5. We define an operator on ~p(OA=Z dA)f2p by 

H~tp(B)Qp = I-top(Ha, v + WA), ~cp(B)] ~p (2.18) 

for any B e ag A. From Proposition 2.5, it follows that for any A e a /  and 
B G ~.~A, 

G(~)(A, B; t = 0 ) =  lira G(J~(A, B; t = 0 )  
A ~ Z  

= i  lim pA,(A3u,,+wA(B)) 
A~.~ Z 

= i(z~p(A)*f2p, ~p(3na + wA(B))f2p) 

= i(gp(a)*f2p, H~p(B)f2p) (2.19) 
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Similarly, it follows from Proposition 2.5 that for any B ~ ~r 

G(m)(A, B ; t =  O)= i"(rcp(A*)(2 o, H'%p(B)f2p) (2.20) 

and 

1(7-cp(A*)~2 p, HmT"co(B)~'2 p)l ~ HAlL C'~(m!) 1/2 (2.21) 

Since ~Zp(~C)f2p is dense, one may conclude that zp(B)f2p is an analytic 
vector for H. Notice that HOp =0. Since r~p(OA~Z dA)f2p is dense, H is 
essentially self-adjoint on 7zp( U dA)f2p and 

G(A, B; t) = (~p(A*)f2p, ei'H~p(B)e i'14f2p) 

Since H O p = 0  by (2.18), (2 o is invariant under e ~'H. This proves 
Theorem 1.1 completely. 

3. GIBBS C O N D I T I O N S  FOR I N F I N I T E - V O L U M E - L I M I T  
STATES 

This section is devoted to the proof of Theorem 1.3. For notational 
simplification we make the following convention. In the rest of  the paper we 
suppress the representation notation 7zp if there is no confusion involved. 
Thus, we will use the abbreviated notation A for rip(A). 

We note that any weak *-limit p of {PA } satisfies the following weak 
KMS conditions: For any A, B ~ r  and f e D ,  

f dt f ( t )  G(A, B; t)= f dt f ( t  + i~) G(B, A; - t )  (3.1) 

The above equality follows from the corresponding KMS conditions for the 
states PA and Proposition 2.5. The above relation implies that f2p is a 
separating vector for rCp(~r (Example 5.3.13 of Ref. 1). The regularity 
condition (G-l)  follows from Lemma 2.1 and Proposition 2.5: 

L e m m a  3.1. Any weak *-limit p of {PA} satisfies conditions (G-l)  
and (G-2) in Definition 1.2. 

Let H be the self-adjoint operator in Theorem 1.1, and let 

~,(A) = eim Ae-i'H (3.2) 

for any A ~ 5r Our next task is to identify the modular automorphism 
by ~,. For a given A, the oPerator HA, v [=go(HA,F)] is essentially self- 
adjoint on 7zp(0 dA) by the regularity of p. Let 

~t.A,( A ) = Eexp( itH A,,v ) ] A Eexp(-- itH A, v ) ] (3.3) 
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We then have the following result: 

L e m m a  3.2. 

strongly. 

Proof. 
B E np(sJ~), 

For any A e np(~A) and B e  ~p(U S~A), 

~,~(A) BY2 o --* ~.,(A) BY2 o 

From (2.18) it follows that for any Ae~o(.MA) and 

[H, A] BE2p = [(HA. F + WA) , A ] B(2 o (3.4) 

Let A (m) = {x e Z: dist(x, A) ~< m}. Then 

H A.F + W A = H n(l>,v 

Using (3.4) m times, we obtain that for A enp(SJA) , 

cS~( A ) Bf2 p = cS~ ~ ,  v( A ) Bf2 p (3.5) 

Notice that it suffices to prove the lemma for A ~ ~ ~p(dA v), and so for A = 
liP= 1 Cj, i t  A, p ~< IAI. We expand (3.2) and (3.3) in power series. Then for 
B ~ ~p(d) ,  

[~i(A)-ct~,a,,,,(A)] B Q =  (it)" ~ [cS"~(A)-cS~A~,,,r(A)] BQ 
n = l  

1 
n! (it)n ~ [ HA~""v(A)--614Am'F(A)] B(2 (3.6) 

n > - r n  

where we have used (3.5) to obtain the second equality. Using a method 
similar to that used in the proof of Proposition 2.3, one may show that the 
norm of the nth term in (3.6) is bounded by CT~(n!) ~/2 and so (3.6) tends to 
zero as m ~ pp. This prove the lemma. 

Proposition 3.3. Let c~ be defined as in (3.2). Then ~ is an 
automorphism on 7r(sr 

Proof. Since ~p(U ~ )  is dense in ~rp(d), for any Be~zp(~4)", there 
exists a sequence {Bn}~TCp([_J~/A) such that B , - - , B  weakly and so 
c~,(B~) ~ c~t(B ) weakly. Since c~,(B,) ~ ~ (~r  by Lemma 3.2, it follows that 
~,(B) e rc(~r 

C o r o l l a r y  3.4. Let h be the generator of the modular 
automorphism on ~z(~r Then h = H. 

Proof. From the KMS conditions for any finite-volume Gibbs states 
Pa and from Proposition 2.5 one may deduce that p(Ae,(B))  satisfies the 
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KMS condition for A e ~  and B e~CA. Since U ~'A is norm dense, 
p(A~(B)) satisfies the KMS condition for A, Be ~r By Corollary 5.3.4 of 
Ref. 2, (~z(d), c~,) satisfies the KMS condition. The result follows from the 
uniqueness of the modular automorphism (Theorem 5.3.10 of Ref. 2). 

In the rest of this section we prove the Gibbs conditions (G-4) in 
Definition 1.2 for p. We first give a meaning to e x p [ -  �89 WA)]g2p. A 
direct calculation shows that WA is essentially self-adjoint on ~p(U dA). 
Thus, it may be possible to show that H -  WA is a self-adjoint operator on 
a suitable dense domain including ~zp( u ~r Instead, we will use a Dyson 
expansion. Let F A be a one-parameter family of elements given by 

/ r ' A = l " ~  2 ( - - i ) n  d t l  d t 2 " ' "  d t ,  c % ( W A ) ' ' ' e , , ( W A )  ( 3 . 7 )  
n ) l  

where c~,(A)= WmAe ~,v. The above expression is formally equivalent to (z) 

I~A ~ ei t (H WA) e itH 

Propos i t ion  3.5. (1) For any finite A c Z ,  the vector-valued 
functions 

P~2)(z)S2 p = e~,H m Aei(Zo-t-- z.)H W A . . . W A e-~lu f2 o 

are analytic in the tube D(fl2 ) defined by 

D~")={z~C~: 0 < I m z , < I m z ~  l < " "  <ImZl<OO} 

The function P~')(z)f2p is strongly continuous and uniformly bounded on 
its closure r~(-) and fl/2, 

sup IlP(An)(z)f2ppl <~ Cn(n!) 1/2 
z~O~ 

uniformly in A. 

(2) The series 

n>~l ~ <sn<  ' <Sl </3'/2 

converges strongly. 

Proof. We note that be Lemma 2.2 

d s ,  �9 �9 �9 c /sn ~ , s ~ ( w A ) '  . .  % , ( w , ) ~ p  

and so 

(I (It+ g~t,+l/21)~p 4 C"(n!) v2 
i=1  

II(WA)"~plr ~< C'~(n!) 1/2 (3.8) 
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uniformly in A. We note that, as a consequence of Lemma 3.1 and 
Corollary 3.4, p is an ~-KMS state on 7r(d)". Now the proposition follows 
from the bound (3.8), the KMS conditions on p, and a method similar to 
that used in the proof of Theorem 5.4.4 of Ref. 2. For the details we refer to 
Ref. 2. 

Hemark. Formally one may see that 

F~/2(2o~ = exp[ - l f l ( H -  W A )] f2w 

Thus the condition (G-4) in Definition 1.2 makes sense. 
We now complete the proof of Theorem 1.3 by proving the condition 

(G-4) in Definition 1.2: 

Proof  o f  Theorem 1.3. By Proposition 3.3, Corollary 3.4, and (2.13) 
we only need to show that the condition (G-4) in Definition 1.2 holds for p. 
Let A and A' be finite subsets of Z such that A ~ A' ~ Z, and let 

c~A'(A) = [exp(iZHA, v)] A [exp( -- izgA,,V)] (3.9) 

for A ~ s~r A. It then follows from a Dyson expansion that 

1 "A'A'=- exp[i t(Hm,v - WA)] exp(i tgA, z) 

: 1 +  y" ( - i , ' f o d t l f s  ' d t ,  c~tA '`WA)'''c~tAI' (WA) 
n ) l  

We define 

P(')A,A',tZ~, = c~A'( W A )''" ezrA' ( W A ) 
(3.10) 

( m )  . A '  QA,A , (4 )=~ ' (WA)  "" C%,(WA) 

and for BE~4a,,, A " c A ' ,  

F(amh~)(B; 4, z ) =  pA,(Q~,)A,(4) BP~,)A,(z)) (3.11) 

Then by the KMS conditions for PA' the regularity of PA (Lemma 2.2), and 
a method similar to that used in the proof of Theorem 5.4.4 of Ref. 2, it is 
easy to show that the functions F(Am2)(B; ~, z) are analytic on the domain 

D}rf~ = {(4, z )e  cm+": 

- � 8 9  < I m 4 m < 0 < I m z . < . . .  <Imzl< �89  } (3.12) 

continuous on its closure and bounded uniformly in A' on its closure by 

I FSmy)( B; 4, z)l ~< C~ + ~(m! )l/2(n! ) ~/2 (3.13) 
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Moreover, using a method similar to that used in the proof of 
Proposition 2.5 (and Proposition 2.3), one may prove that any derivative 
of F]~9(B; ~, z) is also bounded uniformly in A'. Let {A'~) be the subnet of 
{A'} such that GA,(A,B;t) converges to G(A,B;t) .  Using either 
Lemma 2.4 or else the method on p. 408 of Ref. 2 (with Vitali's theorem), 
one may choose a subnet A'~, of A'~ such that 

F~Am")(B; 4, z ) =  lim FA,A'~.(B; 4, Z) 
A'~ ,~  Z 

on the closure of D~'i ") (uniformly in compacts). Thus, we have 

( Q , , ,  ~ , s ~ ( w A )  �9 �9 �9 ~ ( w A )  B ~ . ( W ~ )  �9 �9 �9 ~ , s ~ ( W ~ ) ~ )  

= lira pA'(~A!(WA)'' '~A~(wA) B~A~(WA)'"aAI(w1)) (3.14) 
A~, ~ Z ~s~ 

for any ~ ' - ~ f l < S l <  "'" < S m < 0  and 0 < s , <  ""  <�89 Integrating both 
sides of (3.14) over the regions, summing over m and n, and using the 
uniform bounds in (3.14) (together with Proposition 3.5), we obtain the 
following result: Let 

I~ifl/2A,A'____ exp[ - � 8 9  - -  WA) ] exp(�89 v) 

Then for any A e dA, B e dA,, A' c A ~', 

(Fk/2Q ~, ~p(A) ~,(B) F~/2Q o) 

- lira a a~, * ABFA,A','~ - -  PA '= ' ( (F i f l ' /2  ) ~" --i[~/2 ! 
A '~ ,~  Z 

lira p A'~,( A ) A A~' * A,A'~, = BFi~/2 ) 
A~, -~. Z 

= p(A)(r~/2~o, ~p(B) r~/2~2~) 

Here we have used the fact that for any A e d A  v, B e ~ v ,  A ~ A' = ~ ,  

TrF,~,(AB) = const • TrF~(A) TrF,,(B) 

to obtain the second inequality in the above expressions. This proves 
Theorem 1.3 completely. 

4. U N I Q U E N E S S  OF G I B B S  S T A T E S  

This section is devoted to proving the uniqueness of Gibbs states. Our 
main strategy is as follows: Let F be the set of Gibbs states on ~4 (or an 
algebra ~7 defined below). We will show that F is a metrizable Choquet 
simplex, and so each state in F is the barycenter of a unique probability 
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measure concentrated on extremal points of F. ~2'6) We then introduce the 
notion of the algebra at infinity, .Y)~, for co s F. It will follow that, if ~o s F is 
extremal, then ~o~ = {c~ }. Finally, let co be an extremal Gibbs state and let 
p be a weak *-limit state of finite-volume Gibbs states PA. Using the fact 
that expectations of the surface energies WA are bounded uniformly in A, 
and using the Gibs conditions for co s F, we show that there is a positive 
operator T affiliated with ~o~ such that co(TA)=p(A) .  Since G o =  {c~}, 
this will prove Theorem 1.4. 

Our method is closely related to those in Refs. 1, 3, and 7o But, as 
stated in the introduction, we need to modify the methods in Refs. 1 and 3 
in order to take care of unbounded spins and the mixture of classical and 
quantum observables. This makes it necessary to take several limiting 
processes in the proof. 

Before proving Theorem 1.4, we need some preparation. The first 
question is whether the set F of Gibbs states is metrizable in the weak*- 
topology. Using an argument similar to that used in Ref. 12 and the 
regularity of cot  F, one may be able to show the metrizability directly. 
Instead, we give the following argument here. Let ~ be the one-point com- 
pactification of ~ and let 

~CJ = ( A~)Z (~ ( [~ I A ' ) @ ~d FA I (4.1) 

Then su7 is separable and so the set g of states on s~7 is metrizabte in the 
weak*-topology. Let c5 s ~ be a state satisfying the bound 

[z[m{~(O'i'+l/2exp[-o~(b~+~/2])} ~exp[c(lz[2 + tz])] (4.2) 
m = 0  

uniformly in ~ s (0, oe), where c is the constant given in the condition 
(G-l)  in Definition 1.2. Then c5 defines a regular state on d uniquely, 
which we denote again by (5. Furthermore, one has ~(s~7)" = ~ ( d ) " .  Let 
r be the set of states on s~ 7 satisfying the bounds (4.2) and the conditions 
(G-2)-(G-4) in Definition 1.2. Then /~ is metrizable. On the other hand, 
any regular state co on d defines a state on s~7 satisfying the bounds (4.2). 
Thus, in order to simplify our arguments, we assume that the set F of 
Gibbs states is metrizable in the weak*-topology. Otherwise, one may 
replace F by P in the rest of this section, and then our conclusions still 
hold for F and ~7. 

We first collect some results, which are consequences of the conditions 
(G-1)-(G-3) in Defintion 1.2. As before, for cot  F let 

o~( B) = ei~h Be- i~  
(4.3) 

o~A(B) = ei~HA.VBe i~HA.F 
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Here we have suppressed the representation notation [i.e., HA,F= 
gco(HA,F)]. Then we have the following results: 

P r o p o s i t i o n  4.1. (1) For  any finite A = Z and for any co ~ F the 
vector-valued functions 

P(Am(Z )f2~o = ~..( W A) . " . a~:( W A)f2o 

are analytic in the tube 

D ( ' ) = { z G C ' :  0 < I m z . < . . .  < I m z : < f l / 2  } 9/2 

The function P(A')(Z)f2~o is strongly continuous and uniformly bounded on 
its closure n(-) and 9/2 ' 

sup IIP(A')(z)~?o.l[ <~ C'(n!)  */2 
_ n ( n )  

uniformly in A and co ~ F. 

(2) For  co m F, the series 

FA'2~co = ' Q ~ o + p /  Z fo dSl"" dsn ~176176 

converges strongly and uniformly in co c F. 

(3) For  coeF,  Ber~o,(dA), and A e r c ~ ( d ) ,  

~A'(B) Af2o, ~ e~(B) As as A' --* Z 

strongly for D~J. The convergence is uniform in co e F. 

(4) Let co~F. Then for O<<.s,<.~ . . .  <.s1<~[1/2, 

~ 2 ~ ( w . ) "  " - ,  

strongly as A'-+ Z. The convergence is uniform in co G F. 

Remark.  For any co G F the modularity condition (G-2) implies that 
co satisfies the K M S  conditions 

(f2o, Ae~e(B)f2~) = (t2o~, BAf2,o) (4.4) 

for any A, B~ rco,(~r 

Proof  o f  Proposi t ion 4.1. Parts (1) and (2). In the proof of 
Proposition 3.5, we used only the KMS conditions and the regularity of p 
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[-to obtain (3.8)]. Since co satisfies the same conditions, the proposition 
follows from the same method as that used in the proof of Proposition 3.5. 
The uniformity in co e F follows from uniform bounds on the right-hand 
side of (3.8) by the regularity condition (G-I). 

Part (3). Let A(m)= ( je  Z: dist(j, A)<~ m}, Then the condition (G-3) 
implies that for BGTZm(~CA) , A e2zo,(d), 

fiE(B) A(2o~ = 6'~A~m~v(B) A(2~ (4.5) 

and so it follows that for ze  n(1) p/2 

IIc~z(B) As - ~A'(B) Af2~kl 

,,=,,,--~.~ 11167,~. F(B)--'~.A,~( )] A~,II 

where m ' =  dist{A, ~A' }. Using a mthod similar to that used in the proof of 
Proposition 2.3 and the regularity condition (G-l), one may show that the 
norm of the nth term in the above expression is bounded by c"(n!) ~/'' 
uniformly in A' and co E F. This proves part (3) of the proposition. 

Part (4). Notice that 

~,~(w)..- ~I(WA)~--~"s,(WA)"" ~s,(W~)~ 

k = l  

• o~ ~( WA)''" O~s~( WA )(2~ (4.6) 

We expand etA.'(WA) by 

m W 
s m 

~iA'(WA) = ~.. 6m,,v( A) (4.7) 
m = 0  

and ~i,(WA) by an expansion similar to (4.7). Substitute (4.7) into (4.6) to 
express (4.6) into the following form: 

k = l  ml,...,mk-l=l mk+l,...,mn=l mk=m ' m l ! ' ' ' m n [  

We now use (4.5), a method similar to that used in the proof of 
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Proposition 2.3, and the definition of WA in (1.17) to show that each term 
in the sum in (4.8) is bounded by the following type: 

c m, + " + ' . < ~  [(t + g(~j,+ 1/2)3 
1 l = l  

~< C~,,+---+m,((ml + ... +m,+n)l ) l /2  

Uniformly in A, A' and e) s F. Here we have used the regularity condition 
(G-l) and the method in the proof of Lemma2.4 to obtain the above 
inequality. The convergence follows from (4.8) and the above bound. 

P r o p o s i t i o n  4.2. The set F is convex and compact in the weak*- 
topology. 

Proof. Since the set of states is compact, it suffices to show that F is 
convex and closed. Let ( . 0 1 , s  and let (.0=@1(,01 ~-@2(J)2, C~1-1-~2= 1. 
Obviously co is regular. Define an operator H on xo)(U dA)f2~ by 

HA~<,)=[HA,v+WA, A](2<o, Ae~z<~(dA) 

Following the argument in the proofs of Theorem 1.1 and 
Proposition4.1(3), one can show that H is essentially self-adjoint on 
x<o(U ~r and that c~,: A v--+eSmAe -m~ defines an automorphism on 
x(s~r Next we prove that (~(s~r ~) satisfies the KMS conditions. Notice 
that for any A, B e U S~'A 

(f2<o, A~m(B)f2~) = lira (s A~'(B)s 
A ' ~ Z  

= lim co(Aot~'(B)) 
A ' ~ Z  

2 

= lim ~ ~ ajcoj(Aa~'(B)) 
A ' + Z  Li=I  

2 

= ~, ~j(g2~:, Ac~m(B)f2<m ) 
j - - 1  

2 

= ~ c~j(f2o~:, BAD <~ 
j - - 1  

2 

= Z ~J~(BA) 
j = l  

= o ( ~ A )  

= ( ~ ,  B A ~ )  
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Here we have used Proposition 4.1(3) and the modularity of col and o~ 2. 
Since ~o(U ~'A) is dense in ~z(~')", f2~ is separating for 7c(sJ)". Thus, ~o 
satisfies (~ (d ) " , e ) -KMS conditions. By uniqueness of the modular 
automorphism, we conclude that H =  h. This prove the conditions (G-2) 
and (G-3) for co. 

Next we prove the condition (G-4). Using the expansion in 
A Proposition 4.1 (2) for D A - F~/2D,o and using Proposition 4.1 (4), it is easy 

to check that for any A ~ ~'A, B e sJa,, A ' c  A c, 

QA QA ( ~ , A B D ~ ) =  Z ABs O~i(  ~o~, i 

i - -  1,2 

=pA(A) Z OA 
i - -  1,2 

= pA(A)(f2 A, Bf2 A) 

To obtain the first and third inequalities, we have used Proposition 4.1(2) 
and 4.1(4). Thus, F is convex. 

Let {coj} be a sequence in F convergent to co in the weak *-topology. 
Obviously co is regular. Using the method in the first part of this proof and 
using Proposition4.1(3), it is easy to show that co satisfies conditions 
(@2)-(@3). Recall Proposition4.1(2). We use Proposition4,1(2) and 
4.1(3) and the Gibbs conditions for coj to show that co satisfies condition 
(G-4). In this proof, the uniform convergence in co ~ F in Proposition 4.1 (2) 
and 4.1(3) is in need. We leave the detailed proof to the reader. Thus, F is 
closed. 

We investigate the vector f2 A A o~=Fi~/2f2~ for a given co~F in more 
detail. 

k e m m a  4.3. For each finite A c Z  and co~/7, the vector 
A _ _  A Qo~- I'i~/2Qw is cyclic and separating for ~(d)" .  

Proof. Let Wa,n be the approximate surface energy obtained from 
WA by replacing 0i+1/2 by ~bi+l/2[1 + (1/n)O~+l/2] -1. Then the operator 
WA,n is bounded. Let 

F~ '~ = e i=(h wA'~)e-iZh (4.9) 

Then, by Theorem 5.4.4 (and Corollary 5.4.5) of Ref. 2, f2 A,~ = ffa,n 0 is co i l3 /2  ~ "  co 

cyclic and separating for 7~(d)". Furthermore, DA,,, satisfies KMS con- 
ditions for 

o~WA,,(A) = ei~h- w,o) Ae i,(h- ~vA,~) (4.10) 

Let V~, be the (closed) natural cone corresponding to (~r(sr f2,o ) (see 
Section2.5.4 of Ref. 2). Then g2~,"/11s is the unique normalized 
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representation of the ~w~,<KMS state coA,, contained in the cone V~ 
(p. 160 of Ref. 2). 

We define an operator H A (=h-WA) on the Hilbert space ~ A =  
rCo(Sr f2 A by 

A A H A D o =  [ h -  WA, AIr2 A (4.11) 

Using Proposition 5.1(2), the regularity of co e F, and a method similar to 
that used in Proposition 3.5, one may obtain that 

11(r 1/2)m t'r~ II ~ cm(n!) 1/2 (4.12) 

We use the above bounds and the method employed in the proof of 
Theorem 1.1 to conclude that H A is essentially self-adjoint on U z~(~cA) 12A 
and that A A H O~ = 0. We write 

c~W~(A)=e~m~ Ae  ~tH~ (4.13) 

We prove that s A satisfies the ~ W~-KMS conditions. In order to show this, 
we assert that for z e D ~  and A s rc~(sCa,), 

%W~(A)QA= lira aw~,'(A)t2A (4.14) 

strongly. To prove this, we expand c~W~(A) and c~*,(A) by power series in 
z, and then we use the method in the proof of Proposition 2.3 and the fact 
that ]l(~b~+ ~ A,~ 1/2) f2~o Ii<~cm(m!) 1/2 uniformly in n to conclude that (4.14) 
holds. We leave the detailed proof to the reader. Using (4.14) and the fact 
that f2 A," satisfies e wA,~ conditions, we obtain 

(f2A~o, A c q ~ ( B ) f 2 ~ )  = lira ,(f2 A,"~ , A%~A,.(B)f2 A*) 
n~oo 

lira tO A,~' BAr2 A,~) 0 A = ,--~o , = ( ~, BAg2A) 
rt  ~ o o  

for any A, B e  (J ~o~(~4A'). Since (j ~ ( d a , )  is dense in rco~(d)", f2 A satisfies 
c~WA-KMS conditions. Thus, f2 A is separating for r t (d)" .  Since f2{,n~ V~o, 
f2 A e Vo by (4.14). From Proposition 2.5.30 of Ref. 2, it follows that f2 A is 
cyclic for zt(sr This proves the lemma completely. 

R e m a r k .  As stated in the remark below Theorem 1.4, it can be 
proven that any Gibs state co e F is an even Gibbs state (co e F~). The proof 
can be produced in the following manner: Let co ~ F and let A ~ d ~ be an 
odd element. By the Gibbs condition (G-4), ~r ( ~o, A - O  A) = 0. Note that the 
surface energy W A is affiliated with ~43. Let 

F ~ / 2 ( -  Wm)g2~ = - e x p [ -  �89 A + WA)] f2~ 
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be the local perturbation of f2 A by - WA. Then F ~ / 2 ( -  WA)~2 A = ~o .  Since 

(r~/~(- w~)~4, A- r~/~(- W~)~o~)= 0 

we have that (D~o, A (2o~) = 0. We do not produce the detailed proof here 
and leave it as an exercise. However, we will not use the above fact in the 
rest of the paper. 

As before, we write that for co e F and A e ~o>(s~)", 

~r'~A _ A 
Fi6/2 ~ co 

~z(A)=er (4.15) 

o~zwA = eiz(h WA)Ae iz(h- WA) 

We introduce the notion of the algebra at infinity. Let F ~ be the set of even 
Gibbs states. Let ~ 3  and sJ e be the algebras of even elements defined in 
(1.18). For co e F ~, the algebra ~ at infinity and the center ~ for (s~ ~, co) 
are defined by 

0 
A f in i t e  

where 

" = ~ ( s ~ '  ) c~ ~o>(~' ) (4 .16)  ~o~(sJ~) , ~r~ . . . . .  

A '  f i n i t e  

Then ~ = ~ee. For any co e F, the algebra ~o~ at infinity and the center 5e~o 
for ( d ,  co) are defined analogously. 

l . e m m a  4.4. For  co E F  ~, let T e e Y'~. Assume that for any finite 
A c Z ,  A e ~o~(~CA) , and B e  (~%.) 

(s A, ABT(2 4 ) = p 4(A )((2 A, BTD 4 ) 

Then T~ ~ .  

Proof. In this proof we suppress co 
co ~ F e, we write that for a = e or 0 

H e =  ( ~ ( d ~ ) ~  A) , ~ J  = ( ~ ( d ~ ) Q  A) , 

We note that the set 

= A = Z e , c , ,  

in the notation. For a given 

,~AC= (~z(d~c)DA)_ (4.17) 

B,~d,,, C,~ U ,4,,} 
A ' ~ A = ~  
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is dense in n (d )" .  And so one may decompose ~e by 

= ~e,e) |  fitS(0,0) (4.18) 

where _ A A c Yt~(e,e) - ovf e | ~ , and 

H(o,o~={~ AiBiQA: A iEg (d~  BiE;~(d~ - 

Let P1 and P2 be the orthogonal projections to Yt~Ce,e) and oV~(o,o~, respec- 
tively. Then for A: fff~ ~ fife, we have 

A =P1API+P2AP2+P1AP2+P2AP1 

Let Te ~ satisfy the assumption in the lemma. Write 

T= P1TP1 + P2 TP2 + Pl TP2 + PzTPI 

For any A~-, A~ ~(d~A),  B{ ,  Bs ~z~(d~ C~-, C / - ~ ( d ~ c ) ,  and D 1, 
D 2 ~ ~(~r176 we have that by the assumption in the lemma 

((A ;-C~- )*g2 A, P, TP2B( D~-s A) = (QA, A ~- C + TB{ D;-F2A) 

= (QA, A~-BFTC~-D{-QA) 

= pA(A ~+B{ )((2 A, TC~-DF(2 A ) 

= 0  (4.19) 

Here we have used the fact that pA(A )=0 for A ~z(~ '~  
Equation (4.19) implies 

PI TP2 = 0 (4.20) 

By a method similar in the above, we also have 

P2 TPI = 0 (4.21) 

From the assumption it follows that 

((A ~- C~ ).QA, P1 TP1A + C f f  ff~A ) = (ff~A A ~+~.2 + --~T~ + "~2r'+c~A~" ) 

+A+~Y2 A C+TC~(2 A) (4.22) -=PA(A1 2 I~ , 

We write s A = (2 A | s A, where s A and oA are the cyclic vectors for ~ ( J 3  ) 
and n(~r respectively. Then, from (4.22) we have 

(A;~O~, (C+~2~, TQ~;)  A~2;') 
. ~ . ( A ~ A 1 ,  + A + A A A2 'Q1 )(Cl /~a ~) ~r~2, TC+QA(~Qff)Nff2A][-2 
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The above implies that for any ~b, r e Jt  ~A' 

(~b, Tr = b(r ~)I  .,q, (4.23) 

for some binlinear form b(r ~). Using the method in the above, we con- 
clude that for any r r e ~;~AC 

(~, T~) = b'(~, ~)1 ,~, (4.24) 

The relations (4.20), (4.21), (4.23), and (4.24) imply T e u ( a g ~ ) "  for all 
finite A c Z. This proves that T e  ~,e. 

The next step is to show that F is a simplex. 

P r o p o s i t i o n  4.5. The set F e of Gibbs states is a Choquet simplex. 

Proof. Let C = {too: 0 <~ t < oo, co ~ F e} be the cone through F e. We 
must show that C is a lattice. Let co~, co2 e C and define co = co~ + co2. Let & 
be the normal extension of co to r t~(d)" .  Notice that any co'~ F satisfies 
KMS conditions. Following the proof of Theorem 5.3.30 of Ref: 1, one can 
show that co~ and co2 are uo,-normal, and that there exist positive 
T~, T2 E s such that 

co~(A) = oS(A T~), co2(A) = &(AT2) 

Since co~ and co2 satisfy condition (G-4), one has that for any A e r~(~/A), 
8E~(M,,) 

&(ABT, )  = confAB) = p A(A ) coi(B ) = p A(A ) ~o( BTi) 

Thus, by Lemma 4.4, T l ,  T2 ~ ~3oo.e 
Since N~o is Abelian, the greatest lower bound T 1 A T 2 ~ ~.@e exists. 

Define 

(col /~ CO2)(A)=&(A(T~ r, T2)) 

Then co~ A coz is a unique greatest lower bound for co I and co2. Since 
T e T 1 A 2 ~ r  C01 A(.O 2 satisfies the conditions (G-1)-(G-4), and so 

co 1A CO2EC. 

P r o p o s i t i o n  4.6. Let {A} be a net tending to Z and let coEF. 
Then There exist a subnet {A'} of {A} and a state e5 over ~ ( d ) "  such that 

& is an c~-KMS state and for z e D  a) and A, B e U  rc~,(~da) 

QA' go(Aaz(B)) = lim ( ~ ,  Ao~zwa'(B)~"~A')/H~A'II 2 
A ' ~ Z  

where ~, is the modular automorphism on r~(d)" with respect to (2o,. 
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Proof. We write that for any A, B ~ ( d A , , )  and z~D(~ 1~ 

FA(A, B; z) = (QA, A~A(  B)DA) (4.25) 

Then FA(A , B; z) is analytic on D}~ 1> and bounded on D~ 1t by Lemma 4.3 
and its proof. Notice that 

d m 
z (~2o~, Ae z (3HA(B)) +,~) dz m FA(A, B; z) = .m A WAm ~A 

where H A has been defined in (4.11). Using the method in the proof of 
Proposition 2.3 and the e WA-KMS conditions for f2 A~,~, one can show that 

+ ( ) ~zmFA(A,B; ~ C  m QA, ~I t(t+g~bz,+t/2)] (2A 
i = 1  

We next employ the method used in the proof of Proposition 3.5 and the 
regularity of co e F to obtain 

(QA, ~ ,(t + g~b,,+ ,/2), Q: )  <~ Cn,(m,),/2 
i = l  

uniformly in A. Thus, one has that 

dd@ m F A ( A, z) B; <~ Cm(mt) 1/2 uniformly in z and A (4.26) 

for z s D~ ~). Next we note that by the Peierls Bogoliubov inequality 

HQAII2 > inf An 2 PJ&,, Id 
n 

~> inf exp[-(f2o~, WA,nQ,~)] 
n 

= e x p [ -  (f2+.~, WAf2~o)] 

~> e-+' (4.27) 

uniformly in A. 
We now choose a subnet {A'} of {A} such that 

F(A, B; z) = lira FA,(A , B; z) (4.28) 
A ' ~ Z  

822,/46/'3+4-ll 
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Then F(A, B; z) is analytic on D~ 1), bounded on D~ 1J, and 

d m . d"' 
F( A, B; z) = AI, lmZ ~Z FA,( A, B; z) 

dz"; 

d m 

~zmg(A, B;z) <~ Cm(m!) ~/2 

From (4.27) and (4.30) it follows that 

oh(A) = F(A, ~; O)/F('n, "~; O) 

defines a state over ~(sr Let 

coA(A) = (f2A, Af2A)]]~2A]] 2 

Then from (4.26)-(4.30) one shows that 

rh(Ab~'(B))= lim COA'(A6~,(B)) 
A ' ~ Z  

= lim COA'(A6'~(B)) 
A ' ~ Z  

(4.29) 

(4.30) 

(4.31) 

Here we have used the fact that for any B e  rcoJ(dA,,), 6~A.(B)=c~(B) for 
sufficiently large A. Thus 

cS(Ac~:(B))= lim COA'(A~VAr(B)) (4.32) 
A ' ~ Z  

for any A, B e  0 7C~(~A) and ze/5~.  The proposition follows from (4.32) 
and from the fact that co A' is an ~wA'-KMS state. 

k e m m a  4.7. Let co e F be an extremal state. Then N,o = {c~ }. 

Proof. First we note that N~ c ~ .  If there is h eN~  nonconstant 
with 0 ~ h ~< 1, the state co ' (A)= co(h) -1 co(hA) will be a Gibbs state: Since 
heN,o, it follows that for any finite A, Aerco~(.~A), Berr~(~4A,) with 
A ' c A "  

coA(hAB) = COA(A ) coA(hB) = p A(A ) coA(hB) 

and so co' satisfies condition (G-4). Obviously co' satisfies other conditions 
in Definition 1.2. Similarly the state co"(A)= c o ( 1 - h )  -~ c o ( ( 1 - h )  A) is a 
Gibbs state. Thus, co is a convex combination of co' and co". 

Finally we prove the uniqueness of Gibs states: 

Proof of Theorem 1.4. Let co ~ F ~ be an extremal Gibbs state and let 
p be a weak *-limit of a sequence {PA~} of finite-volume Gibbs states. By 
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Proposition4.6 there exists a subnet {A~,} of {A~} such that for any 

A ~(U,~A)  

~(A) = lim r = p ( A )  (4.33) 
A'~ ~ Z 

Here we have used the fact that co E F to obtain the second equality. Since 
05 is an ~-KMS state, we use Proposition 5.3.29 of Ref. 2 (and its proof) for 
7c(sr ~) to conclude that there exists a unique positive operator T affiliated 
with y ' e  such that for any A ~ 7c(sd~) " 

05(A ) = co( TA  ) = ( TU212 ~, A T1/2s ~o ) (4.34) 

The above relation can be extended to ~(~r We write that 

05A(A ) = (T l /2r  "A 0 ATI/2F~/2(2o~) (4.35) 

From condition (G-4) and (4.33) it follows that 

05(Ac~:(B)) = (Qp, ~rp(A) ~(~p(B))f2p) 

for any A ~ ~r B ~ U a/A, z ~ D~, and so 

05A(A) = (F~ /2~p ,  dF~/2 (2p)  ~ p A ( A )  (4.36) 

Thus, using (4.36) and the fact that co, p ~ F, we obtain 

co•(ABT) = 05~(AB) = p A ( A B )  = p A(A ) pA( B)  = p A(A ) 05A( B)  

= p A ( A )  r (4.37) 

By Lemma 4.4 and (4.37), T is affiliated with N~o. 
Since ~ ) =  C~ by Lemma 4.7, co=p. That is, if p is a weak *-limit of 

finite-volume Gibbs states PA and if co and co' are extremal states in F, then 
co = p  = co'. This proves Theorem 1.4 completely. 

Rornork.  The proof can be shortened by the following argument: Let 
T be the positive operator satisfying (4.34). Since T and the modular 
operator A commute strongly by Proposition 5.3.28 of Ref. 2, T1/2f2~ = 
zjV2TU2ff2o, ~ V,o , where V<o is the natural cone. Since T~/R(2,o is separating 
for ~z~(~r T~/2s is cyclic for ~ ( d ) "  by Proposition 2.5.30 of Ref. 2. 
Thus, ( ~ ) ,  Go, T~/2~2o~) is the cyclic representation with respect to 05, and 
SO 05A(A)=pA(A)05( ' [J )  by the condition (G-4). Hence (4.37) holds. 

P r o o f  o f  T h e o r o m  1.5, The follows from Theorem 1.4, Lemma 4.7, 
and Theorem 2.6.10 of Ref. 2. 
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5. D I S C U S S I O N  

So far we have proved the uniqueness and the cluster property of 
Gibbs states for the semiclassical approximation (1.3) of the full quantum 
polyacetylene model (1.1) for any/~ > 0 with free boundary conditions for 
boson fields. Thus, within the above simplification, it is impossible to con- 
struct a soliton sector, and so the heuristic arguments in Refs. 10 and 11 
would fail. Therefore, it would be interesting to know whether our results 
in this paper can be extended to the following cases: 

(a) Other boundary conditions. 

(b) Full quantum model (1.1). 

(c) Ground states (/~= oe). 

In the rest of this section we give a brief discussion of the above cases. 
We first consider cases (a) and (b). For A = {n,..., m} ~ Z and for any 

f :  A ~ R, define 

r n - - I  

P ( f ) =  ~ Pif(i), U(c~*f)= ~ (u,+~-u,)f(i) (5.1) 
i ~ A  i = 1  

and introduce two norms 

[IflhU = ~ [ l + ( i - J )  2] ~ l f (J ) [~  < c o n s t x  IifH1 
i , j ~ A  

i ~ j  

qLf[l~ = ~ [1 + ( i_ j )2 ] -1  If(i)f(j)t 
i , j ~ d  

i ~ j  

(5.2) 

Then for the full quantum model with/~ > 0 it can be shown that 

pA(exp[p(hl) + u(O*h2)]) ~< exp {c 
2 

[HIh~lq? + (hLh~ll~)~l (5.3) 
i ~ l  

for some constant c independent of A, where PA is the finite Gibbs state for 
the quantum model (1.1) with some boundary conditions (e.g., Dirichlet or 
free boundary conditions). A bound similar to that in (5.3) also holds for 
the semiclassical approximation with other boundary conditions. Because 
of a lack of space, we will not produce the proof of the bound (5.3) here. 

In case (b) the bound (5.3) implies that any infinite-volume-limit 
equilibrium state is entire analytic and a modular state on a quasilocal 
algebra. And so a quantum dynamical system can be constructed. But in 
order to show the uniqueness of equilibrium states, one has to formulate an 
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appropria te  Gibbs condit ion corresponding to Definition 1.2 (G-4). If  one 
removes the surface energy WA defined in (1.17) [~bi= c3u)i], the perturbed 
states 

o>~(A) = A A ( Fi~/2 s ~o , AFiB/2 f2 ~) 

are not  factorized. Thus, for A = {n,..., m} one has to include either 

W'A= [ ( u . - u .  t ) 2 + ( u . , + l - u , ~ )  2] w2/2 

or else 

~ A = (2U.U~_ I + 2Urn+ I U,.,) W2/2 

into the surface energy to factorize co A. Apparent ly WA and W~ are too 
singular to define F~/2f2 ~ in terms of the Dyson  expansion (3.7). A dif- 
ficulty similar to the above arises in case (a). Because of this difficulty we 
are unable to extend our  results to cases (a) and (b). On  the other hand, 
the results in Ref. 5 suggest that  the uniqueness of equilibrium states may 
hold for (a) and (b). 

Finally, we consider case (c). For  f i =  oo (ground states) it can be 
argued that  the quan tum model  (1.1) is very closely related to the two- 
dimensional Yukawa model in Z x R. (5'1~ Thus, for sufficiently large g, a 
first-order phase transition may  take place. In this case one can construct  a 
soliton sector and prove the existence of fractional charges. We hope to 
come back to this subject in future. 
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